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H I G H L I G H T S

� Agreements often involve group decisions where fairness may play a key role.
� This can be addressed through a multiplayer generalization of the Ultimatum Game.
� We show that imposing consensuses raises the proposals, leading to fairer agreements.
� Stochastic effects are shown to further enhance group fairness.
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a b s t r a c t

The emergence and impact of fairness is commonly studied in the context of 2-person games, notably
the Ultimatum Game. Often, however, humans face problems of collective action involving more than
two individuals where fairness is known to play a very important role, and whose dynamics cannot be
inferred from what is known from 2-person games. Here, we propose a generalization of the Ultimatum
Game for an arbitrary number of players – the Multiplayer Ultimatum Game. Proposals are made to a
group of responders who must individually reject or accept the proposal. If the total number of
individual acceptances stands below a given threshold, the offer will be rejected; otherwise, the offer
will be accepted, and equally shared by all responders. We investigate the evolution of fairness in
populations of individuals by means of evolutionary game theory, providing both analytical insights and
results from numerical simulations. We show how imposing stringent consensuses significantly
increases the value of the proposals, leading to fairer outcomes and more tolerant players. Furthermore,
we show how stochastic effects – such as imitation errors and/or errors when assessing the fitness of
others – may further enhance the overall success in reaching fair collective action.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Although evidence exists of collective action problems that other
species engage on and successfully solve (Axelrod and Hamilton,
1981; Maynard-Smith and Price, 1973), humans are truly singular in
the extent to which they resort to collective action (Barrett, 2003;
Hardin, 1968; Henrich et al., 2001; Kollock, 1998; Levin, 2012;
Ostrom, 1990). To this end they have developed highly sophisticated
and unparalleled mechanisms (Apicella et al., 2012; Dietz et al., 2003;
Fehr and Fischbacher, 2003; Fowler and Christakis, 2010; Gintis,
2000; Kollock, 1998; Nowak and Sigmund, 2005; Ohtsuki and Iwasa,
2004; Pacheco et al., 2009; Skyrms, 2004; Skyrms, 2010). Similar to

what happens when two individuals interact, also when groups get
together to make collective decisions, the concept of fairness is
known to play a very important role (Fehr and Schmidt, 1999; Fehr
and Gächter, 2000; Henrich et al., 2001; Rabin, 1993). However, and
in sharp contrast to the two-person interaction cases, where fairness
has been given considerable attention, both theoretically (Binmore,
1998; Gintis et al., 2003; Nowak et al., 2000; Page and Nowak, 2002)
and experimentally (Fehr and Schmidt, 2006; Henrich et al., 2001,
2010; Rand et al., 2013; Sanfey et al., 2003), the study of fairness in
connection to group decisions has been limited to few investigations
(Bornstein and Yaniv, 1998; Fischbacher et al., 2009; Messick et al.,
1997; Robert and Carnevale, 1997).

The Ultimatum Game (UG) (Güth et al., 1982) has constituted
the framework of choice (for an exception, see (Van Segbroeck
et al., 2012)) with which to address the emergence and evolution
of fairness in two-person interactions. In the two-person UG (and
using common notation (Sigmund, 2010)), one individual plays the
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role of the Proposer whereas the other individual plays the role of
the Responder. The Proposer is endowed with an amount (without
loss of generality, we may assume it is 1 unit) and makes an offer,
which is a fraction p of that amount. We may assume that the
Responder has an expectation value q, and will accept the proposal
if the condition pZq is satisfied, in which case the Proposer earns
1�p and the Responder earns p. In such a scenario, a fair offer
corresponds to an equal split, that is p¼1/2.

Theoretical (Gale et al., 1995; Nowak et al., 2000; Page and
Nowak, 2002; Rand et al., 2013) and experimental (Henrich et al.,
2004; Henrich et al., 2001) investigations have shown that humans
generally accept offers with pZ0.4, a feature which (with some
variation) applies to both old and new societies, as a series of cross-
culture studies have shown (Henrich et al., 2001). But what about
group decisions?While there are no theoretical studies of the UG in a
group context, there is one experiment (Messick et al., 1997) which
naturally captures some limiting situations of the Multi-Player UG
(MUG) that we develop below, and which puts in evidence a small
part of the plethora of new possibilities enacted by group decisions,
with direct consequences in what concerns the concept of fairness.
Naturally, we shall take the opportunity to compare our independent
theoretical predictions with available results from the aforemen-
tioned behavioral experiments.

2. Model and methods

2.1. Multiplayer ultimatum games

Let us assume a large population of individuals, who assemble
into groups of size N. Each individual has a strategy encoded by 2 real
numbers fp; qgA 0;1½ �, whose significance is explained below. At any
instance of the game, there will be 1 Proposer and N�1 Responders.
Following the conventional notation of UG (Sigmund, 2010), the total
amount initially given to the Proposer is equal to 1. The Proposer will
offer an amount pA[0,1] corresponding to her/his strategy, whereas
each of the N�1 Responders will accept or reject the offer based on
each one's individual acceptance threshold given by qA[0,1]. Thus,
each Responder will individually state his acceptance (if qrp) or
rejection (if q4p). Overall, the group acceptance is conditional on a
minimum number of individual acceptances (M): if the number of
individual acceptances stands below M, the offer will be rejected.
Otherwise, the offer will be accepted. In the former case, no one
earns anything, whereas in the latter case, the Proposer will keep
1�p to himself and the group will share the remainder, that is, each
Responder gets p/(N�1). Thus, in line with the UG, a fair split will be
characterized by p¼1�1/N, as in this case both Proposer and
Responders will get the same fraction of the endowment. In this
context, we should also specify that Empathy, used in the 2-person
UG to characterize those strategies where p¼q (Page and Nowak,
2002) that is, those individuals who will only accept split offers not
below what they propose, is here also associated with strategies
characterized by p¼q.

Group aced in a variable ai, assuming the value 1 if the proposal
by individual i is accepted, and 0 otherwise:

ai ¼
1; if

PN
j ¼ 1;ja iΘðpi�qjÞZM

0; otherwise

(
ð1Þ

where Θ(x) is the Heaviside function, assuming the value 0 when
xo0 and 1 otherwise. The average payoffΠi earned by an individual i
in a given group of N individuals, will be given by the average gain
earned when a individual acts once as the Proposer – ΠP ¼ 1�pi

� �
ai

— and N�1 times as a Responder –ΠR ¼ ð1=ðN�1ÞÞPN
k ¼ 1;ka i pkak,

where pk is the offer of individual k and ak refers to the proposal of
individual k. Individual i plays with N�1 opponents; if N¼2 and
M¼1, the game played is the traditional 2-person UG. It is worth

noting that the maximum payoff of individual i is obtained when pi is
the smallest possible and all other pk (the opponents' offers) are
maximized. Therefore, the pressure to free-ride, that is, offering less
and expecting that others will contribute, should be very high.
Furthermore, dividing the game in two stages and reasoning in a
backward fashion, the conclusions regarding the sub-game perfect
equilibrium of this game anticipate the use of the smallest possible pi
and qi, irrespectively of N and M, thus mimicking the conclusions for
the traditional 2-person UG. Following the well-mixed assumption,
the fitness of one individual will be provided by the average payoff
calculated over a big number of groups, randomly sampled from the
population.

2.2. Evolutionary dynamics

Instead of revising their strategies through rational reasoning,
Humans often resort to the experiences and successes of others to
select their next move, as, in fact, has been shown to be the case in
the context of public donations (Carman, 2003; Fowler and Christakis,
2010; Rees et al., 2009). Such an interacting dynamical process,
grounded on peer-influence and imitation, creates a behavioral
ecosystem in which strategies and behaviors evolve in time, whereas
the returns of each individual depend on the actual frequency of each
strategy present in the population. Here we adopt such social learning
dynamics (Rendell et al., 2010; Santos and Pacheco, 2011; Sigmund
et al., 2010; Tomasello and Call, 1997; Traulsen et al., 2006), which is
also well suited to be used in the framework of evolutionary game
theory. The baseline assumption is that individuals performing better
when playing multiplayer UG (i.e. those achieving higher average
payoffs) will be more often imitated and thus their behaviour will
spread in the population. In other words, social success drives the
evolution of strategies in the population. This dynamical process is
implemented both analytically and in computer simulations.

2.3. Simulations

Our simulations start from a well-mixed population of size
Z¼1024, much larger than the group size N. Individual strategy
values of p and q are all drawn from a probability distribution
obtained by discretizing a uniform distribution in the interval [0,1]
into 101 equally spaced values. Simulations last for 4000 generations,
and we consider that, in each generation, all the individuals have the
opportunity to revise their strategy through imitation. At every
(discrete and asynchronous) time step, two individuals A and B are
randomly selected from the population and their individual fitness is
computed, by averaging the payoff obtained from 104 randomly
sampled groups of size N; subsequently, A copies the strategy of B
with a probability χ which grows monotonously with the fitness
difference fB� fA, following the pairwise comparison update rule
(Traulsen et al., 2006) – χ ¼ 1þe�βðf B � f AÞ

� ��1
. The parameter β

conveniently specifies the selection pressure (β¼0 represents neutral
drift and β-1 represents a purely deterministic imitation
dynamics). Additionally, when imitation occurs, the copied p and q
values will suffer a perturbation due to errors in perception. The new
strategy parameters will be given by p0 ¼ pþξpðεÞ and q0 ¼ qþξqðεÞ,
where ξpðεÞ and ξqðεÞ are uniformly distributed random variables
drawn from the interval �ε; ε½ �. This feature (i) models a slight blur in
perception, (ii) helps to avoid the random extinction of strategies, and
(iii) ensures a complete exploration of the strategy spectrum, given
that the pairwise comparison does not introduce new strategies in
the population (Vukov et al., 2011). Also, with probability μ, imitation
will not occur and the individual will adopt random values of p and q,
performing a random exploration of behaviors. For each combination
of parameters, the simulations were repeated 50 times. We computed
the average values of p and q by performing a time and ensemble
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average, taken over all the runs and considering the last 25% of
generations, disregarding the initial transient periods.

2.4. Analytical insights from a model based on the replicator
dynamics

The analytical results we shall present and discuss in Section 3
were obtained employing the replicator dynamics (Hofbauer and
Sigmund, 1998), which describes the frequency dependent evolu-
tionary dynamics of infinite, well-mixed populations. Let xi be the
relative frequencies of a strategy i, and f i the fitness of the same
strategy. Then, the replicator equations read _xi ¼ xiðf i� f Þ, where f
stands for the average fitness of the population. As

P
xi ¼ 1, the

overall dynamics of a population with s strategies may be given by
(numerically) solving a system of s�1 coupled, non-linear, ordinary
differential equations. The replicator equations reflect a simple and
intuitive dynamics for each strategy depending on whether the
fitness of a given strategy is higher (lower) than the average fitness
of the entire population: The frequency of individuals adopting that
strategy will increase (decrease) in the total population. As all
individuals are equally likely to interact, groups are randomly
sampled from the population, which leads to group compositions
that follow a multinomial distribution (Gokhale and Traulsen, 2010;
Hauert et al., 2006; Pacheco et al., 2009; Sigmund, 2010).

In our case, we analyze the evolution of a limited strategy space
made of s¼3 paradigmatic strategies, obtained by considering two
different values for both p and q – high (h) and low (l). In this
restricted strategy space we still have 4 possible strategies – however,
in the following we will disregard the Paradoxical strategy P
corresponding to the combination P ¼ fl;hg, as one can trivially show
that this strategy is strictly dominated by any of the remaining 3. In
the specific scenario of MUG, we use the following designation for
the 3 strategies remaining strategies: The pro-Social strategy
(S¼ fh;hg), the Asocial strategy (A¼ fl; lg), and the Generous strategy
(G¼ fh; lg) (see below for details). Making use of this set of
3 strategies, we may write the average fitness of each strategy as

f SðxS; xAÞ ¼
XN�1

kS ¼ 0

XN�1�kS

kA ¼ 0

ðN�1Þ!
kS!kA!ðN�1�kS�kAÞ!

xkSS xAkA ð1�xS�xAÞN�1�kS �kAΠSðkSþ1; kAÞ;

f AðxS; xAÞ ¼
XN�1

kS ¼ 0

XN�1�kS

kA ¼ 0

ðN�1Þ!
kS!kA!ðN�1�kS�kAÞ!

xkSS xAkA ð1�xS�xAÞN�1�kS �kAΠAðkS; kAþ1Þ;

f GðxS; xAÞ ¼
XN�1

kS ¼ 0

XN�1�kS

kA ¼ 0

ðN�1Þ!
kS!kA!ðN�1�kS�kAÞ!

xkSS xAkA ð1�xS�xAÞN�1�kS �kAΠGðkS; kAÞ;
where Π iðkS; kAÞ is the payoff that a player adopting a strategy
i¼ fS;A;Gg receives in a group of size N, made of kS S's, kA A's and
N–kS–kA G's. These payoff functions read

ΠSðkS; kAÞ ¼ 1�hþðN�kA�1ÞhþaðkSÞkAl
N�1

;

ΠAðkS; kAÞ ¼ ð1� lÞaðkSÞþ
ðN�kAÞhþaðkSÞðkA�1Þl

N�1
;

ΠGðkS; kAÞ ¼ 1�hþðN�kA�1ÞhþaðkSÞkAl
N�1

:

As high (h) proposals will always be accepted, only Asocial individuals
are in danger of having their proposals rejected. Moreover, as only
pro-Social individuals reject low proposals, and since a single Asocial
Proposer is not able to accept his own proposal, the relevant number
of acceptances will be N�kS�1; thus, a(kS) summarizes the accep-
tance criteria – aðkSÞ ¼ΘðN�kS�1�MÞ, in which Θ(x) defined
before.

3. Results and discussion

The results of the numerical simulations are shown in Fig. 1,
where we plot the average stationary values of p and q in the
population (normalized by the corresponding values for N¼2) as a
function of the group size N, for two limiting group behaviors: M¼1
(left panel) and M¼N�1 (right panel). Thus, whereas the left panel
shows how p and q evolve as a function of group size in situations in
which offer acceptance by a single Responder is enough to ensure
collective action, the right panel shows the corresponding evolution
in situations in which a unanimous acceptance by all Responders is
required before the group-split is accomplished.

We take as reference values the stationary values of p and q for
the conventional (2 player) UG, with values p¼0.27 and q¼0.11,
respectively. These reference values are influenced by the intensity
of selection (β) and errors in imitation (ε), which, as discussed
below (see also Rand et al., 2013), do influence the stationary
values plotted for p and q. Fig. 1 clearly shows that the two limiting
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Fig. 1. Results for the (population wide) average values of p and q obtained as a result of computer simulations of the MUG in populations in which individuals start from a
random distribution of strategies defined each by the duple fp; qg. We plot the values of p and q relative to the corresponding values for N¼2 (p¼0.27 and q¼0.11,
respectively). Solid bars display q-values, whereas hollow bars display p-values. Unlike the usual N¼2 UG, in the MUG there are many cases that one may consider. The
panels above explore 2 limiting cases: (a) the case in which it is enough that a single Responder accepts the offer for the split to be made, and (b) the case in which all
Responders must accept the offer for the split to be made. These 2 opposite limits converge to a single case for N¼2. As the panels demonstrate, collective action in the MUG
exhibits a very different behaviour as a function of group size in these 2 extreme cases: Whereas increasing group size allows for the evolution of societies in which Proposers
offer smaller and smaller values of p (left panel) the opposite happens when unanimous acceptance is required. In both cases, however, one witnesses an increase of the
q-value with increasing group size, although the increase is higher in the case M¼1. Other parameters: Z¼1024, μ¼0.001, ε¼0.05 and β¼1.
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situations considered impart very different outcomes in what
concerns the dependence of p on group size, as opposed to the
dependence of q on group size, where we obtain, in both cases, a
saturating increase with increasing group size, showing that larger
groups tolerate, on average, more demanding Responders. In what
concerns p, when a single Responder is enough to warrant a split
(M¼1), the left panel confirms the intuition that, the larger the
group, the larger the probability that a single Responder will ratify
the split, and hence p will evolve towards decreasing average
values as a function of increasing group size N. On the other hand,
whenever M¼N�1, larger groups translate into stricter criteria of
acceptance, given that unanimity among the Responders is now
required. As a result, p becomes an increasing function of group
size N in this case.

The two limiting cases studied above (M¼1 and M¼N�1) are
but extreme cases of a richer portfolio of possibilities encom-
passed by the MUG. In Fig. 2 we show what happens for p as the
value of M is gradually changed for 2 group sizes: N¼5 (blue
squares) and N¼15 (red circles).

As expected (in view of the results of Fig. 1), one witnesses an
increase of p with M for fixed group size; q, on the other hand,
decreases with increasing M. This behaviour is more pronounced
in large groups, where we witness a saturation of the changes in p
and q for larger group sizes (see Fig. 1).

In order to shed light on the results we obtain numerically we
discuss, in the following, the model introduced in Section 2.4,
obtained by reducing the strategy space, and which allows us to
discuss the evolutionary dynamics of theMUG analytically. Consider-
ing only 2 different values for both p and q, high (h) and low (l), we
obtain 4 possible strategies (Gale et al., 1995; Nowak et al., 2000) of
which we keep but 3: The pro-Social strategy S¼ fh;hg, the Asocial
strategyA¼ fl; lg and the Generous strategy. As stated in Section 2.4,
we leave out the Paradoxical strategyP ¼ fl;hg, as it always collects a
payoff that is lower than any of the other three. While the A-strategy
corresponds to the rational expectation in the 2-person UG (and also
in the MUG – see Section 2 – given the limitations in the values of p
and q), the S-strategy is closest to what is found to be employed by
subjects of laboratory experiments in the UG.

In this subspace of three strategies, the evolutionary dynamics of
a large population engaging in a MUG can be fully analyzed by
computing the gradient of selection (Hofbauer and Sigmund, 1998;
Pacheco et al., 2009) (see Section 2.4) in the full (triangular) simplex
where all possible configurations of the population are represented.
Each vertex of the simplex represents a monomorphic population,
that is, populations in which all individuals adopt the same strategy.
Edges of the simplex represent population configurations in which at

least one of the strategies is missing. The interior of the simplex, in
turn, corresponds to population configurations in which all strategies
coexist, albeit with different fractions in different points. The
analytical results for this simplified game, illustrated for the case in
which N¼5, l¼0.1 and h¼0.6, are shown in Fig. 3. Arrows represent
the direction of selection within this space of configurations, while
the color gradient illustrates the rate of evolution; empty (solid)
circles denote unstable (stable) equilibria.

pro-Social and Generous are neutral with respect to each-other,
something which is lost in the presence of Asocial individuals in
the population. Asocial individuals engage in a N-person coordina-
tion game (Skyrms, 2004) with pro-Social individuals, while they
strictly dominate Generous individuals. Hence, with increasing M
(and fixed N¼5), one observes a corresponding increase of the
basin of attraction of the Social strategy that, in turn, leads to an
increase of the overall area of the simplex in which the population
evolves towards either S- or G-strategies. In light of these results, it
is therefore easier to understand how the complex scenarios
addressed in Figs. 1 and 2 emerge: By forcing that a proposal
may be only accepted by a large number of responders, we are
effectively enlarging the basin of attraction which leads to fairer
offers (large p).

However, in this simplified setting, the evolutionary dynamics
is purely deterministic. This, as is well known, is quite unrealistic,
given the many sources of errors that one has identified to date in
connection with the process of human decision making (Traulsen
et al., 2010). The impact of stochastic effects has only been briefly
considered within the context of Figs. 1 and 2.

In Fig. 4 we explicitly address the role played by both the selection
pressure (β) and errors in perception (ε), showing that an overall
increase of randomness – either by decreasing β or by increasing ε –

increases the chance of fairer offers (higher p) and increasing
demands (higher q), a result in line with (Rand et al., 2013) for the
2-person UG. Not only increasing noise will foster higher offers,
stochastic effects of any kind, will act to disturb in a sizable way the
evolutionary dynamics portrayed in Fig. 3, with the net effect that it
will typically enable the population to circumvent the coordination
barrier between S and A, driving the population towards S. Yet, as
Fig. 4 also evidences, the conclusions regarding the role of M remain
the same.

In summary, we have studied the evolutionary dynamics of the
MUG – a Multi-player version of the traditional 2-player Ultima-
tum Game. We show that, when proposals are made to a group of
individuals, evolution acts to select for low offers, the lower the
smaller the number player(s) in a group required to ensure a
successful split. This result can be understood intuitively in the
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Fig. 2. Results for the (population wide) average values of p and q obtained as a result of computer simulations of the MUG in populations in which individuals start from a
random distribution of strategies defined each by the duple fp; qg. We plot the values of p, panel (a), and q, panel (b), for different values of the ratio M/(N�1), relative to the
corresponding values for M¼1 (p¼0.22 and q¼0.25 for N¼5 and M¼1, and p¼0.19 and q¼0.42 N¼15 and M¼1, respectively). In both panels, the dashed lines provide
linear regression of the data, displayed to stress any non-linear behaviour of the values plotted. Other parameters: Z¼1024, μ¼0.001, ε¼0.05 and β¼1. (For interpretation of
the references to color in this figure, the reader is referred to the web version of this article.)
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following way: If an individual knows that her proposal will have
more than one responder, and if a single responder is enough to
accept the proposal, the risk of having the proposal rejected is
lower. Thus, she may try to maximize her gains, offering less. As
the number of required acceptances increases, the probability to
reach such consensuses decreases, and thus Proposers end up
increasing p to compensate. This is fully confirmed by our results,
which show that as the number M of individual Responders
approaches the group size N, selection acts to increase the value
proposed, leading to offers that compare more favorably with fair
offers, although remaining always below the fair limit. As a result,
p increases monotonously with M.

Our results, which match nicely those obtained experimentally, in
the corresponding treatments, for M¼1 andM¼N�1 (Messick et al.,
1997), extend our understanding of the dynamics of MUG to other
regimes unexplored to date. They further highlight the subtle nature
of N-person interactions, posing new challenges to our current
understanding of the evolutionary routes of fairness. Indeed, most
present and past human endeavors involve many individuals simul-
taneously (Dietz et al., 2003; Ostrom,1990), instead of pairs of players
(N¼2). Yet, despite the complexity of the MUG, we address this
problem in the absence of any additional mechanisms, such as
community enforcement, reputations, norms or pledges (Binmore,
1998; Brandt et al., 2003; Nowak et al., 2000), peer punishment or

A A A A

GS SGSGSG
M=1 M=4M=3M=2

Fig. 3. Evolutionary dynamics involving the strategies pro-Social (S,{h,h}), Asocial (A,{l,l}) and Generous (G,{h,l}) for an infinite population in which both Proposers and
Responders can only adopt low or high values. The dynamics is deterministic, in the absence of any type of errors. The Group size is N¼5, whereas (without loss of generality)
l¼0.1 and h¼0.6. From left to right we increase the minimum number M of Responders that are necessary to accept the Proposer's offer (also shown the percentual fraction
M/(N�1) of Responders required for the Proposal to be accepted). With increasing M, one enlarges the region of the simplex in which Asocial players get extinct and Generous
and pro-Social players co-exist. Note further that with increasing M, any source of noise (errors, trembling hand effects, etc.) may drive the population from a monomorphic
Asocial configuration into a large basin of attraction where pro-Social and Generous players dominate, in agreement with the simulations described above (see also Fig. 4)
where errors and other stochastic effects are explicitly considered. (For interpretation of the references to color in this figure, the reader is referred to the web version of this
article. We use a color scheme in which warmer colors are associated with higher speed of transitions.)

Fig. 4. Results for the (population wide) average values of p and q in the stationary regime, obtained as a result of computer simulations of the MUG (N¼5) in populations in
which individuals start from a random distribution of strategies defined each by the duple fp; qg. We plot the values of p (left, (a) and (c)) and q (right, (b) and (d)) for
different values of the selection pressure (β, top, (a) and (b)), and perception errors (ε, bottom, (c) and (d)). Increasing the amount of noise, by either lowering β or increasing
ε, leads to higher values of average p and q. The effects of stricter acceptance rules by the group are clearly maintained, regardless of the variations in β and/or ε: higher values
of M result in higher values of average p and lower values of average q. Note finally, that there seems to be an ideal error rate at which fairness is maximized, and which is
different from the optimal at ε which individuals become, on average, most demanding.
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sanctioning institutions (Brandt et al., 2003; Fehr and Fischbacher,
2003; Sigmund et al., 2010). Needless to say, in real settings, groups
will exhibit some form of context dependence and size heterogeneity
that is well accounted by assuming the existence of an underlying
network of interactions (Santos et al., 2008). The evolution of strategy
adoption in the traditional 2-person UG was already addressed in
models where individuals are arranged in lattices or networks (Iranzo
et al., 2011; Killingback and Studer, 2001; Kuperman and Risau-
Gusman, 2008; Page et al., 2000; Sinatra et al., 2009; Szolnoki et al.,
2012a; Szolnoki et al., 2012b; Yang et al., 2015). Generally, this body
of work shows that structure as well as noise (Chen et al., 2015; Page
and Nowak, 2001; Page and Nowak, 2002; Page et al., 2000; Rand et
al., 2013; Zhang, 2013) are able to promote fairness and empathy. It
was also shown that, using different pairwise interaction paradigms,
socially desirable strategies, as cooperation, are elicited by specific
network topologies (Pinheiro et al., 2012; Santos et al., 2006). When
these 2-person games are generalized to N-person situations (e.g.
Public Goods Games), the impact of the underlying network of
interaction may be different and should be studied in detail (Perc
et al., 2013; Santos et al., 2008; Santos et al., 2012). The same may
apply to MUG in the context of complex networks, especially since
MUG cannot be built up by a set of independent pairwise UG
encounters, even with the same opponents, given the existence of a
group decision threshold (McAvoy and Hauert, 2015; Pacheco et al.,
2009; Souza et al., 2009). Work along these lines will be needed to
utterly appreciate the evolution of fairness in a multi-player context.

Irrespectively of the numerous extensions and layers of complex-
ity which can be added, the present model already stresses that fair
offers are fostered when an all-encompassing form of coordination is
required – specially in large groups – a situation which, perhaps not
by chance, is ubiquitous in Nature and the social dilemmas of
collective action it portrays (Conradt and Roper, 2005; Conradt and
List, 2009; Kao et al., 2014; Sumpter and Pratt, 2009). From nest-site
selection and collective navigation to group hunting and the salva-
tion of the planet against environmental hazards, examples abound
where a large number of individuals must agree or reach a consensus
before any significant outcome is produced, scenarios that, once
more, cannot be described in the realm of 2-person interactions.
Therefore, as has been argued for the two-player and multi-player
Prisoner's Dilemma (Pacheco et al., 2009; Skyrms, 2004; Worden and
Levin, 2007), by stressing the difficulty to achieve fair interactions on
2-player ultimatum games without recognizing that often we are
dealing with more promising situations, may lead us to make over
pessimistic predictions, and to overlook artless, yet important, routes
to achieve cooperation.
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